IMPLICITLY RESTARTED GENERALIZED SECOND-ORDER ARNOLDI TYPE ALGORITHMS FOR THE QUADRATIC EIGENVALUE PROBLEM

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implicitly Restarted Generalized Second-order Arnoldi Type Algorithms for the Quadratic Eigenvalue Problem

We investigate the generalized second-order Arnoldi (GSOAR) method, a generalization of the SOAR method proposed by Bai and Su [SIAM J. Matrix Anal. Appl., 26 (2005): 640–659.], and the Refined GSOAR (RGSOAR) method for the quadratic eigenvalue problem (QEP). The two methods use the GSOAR procedure to generate an orthonormal basis of a given generalized second-order Krylov subspace, and with su...

متن کامل

A Refined Second-order Arnoldi (RSOAR) Method for the Quadratic Eigenvalue Problem and Implicitly Restarted Algorithms

To implicitly restart the second-order Arnoldi (SOAR) method proposed by Bai and Su for the quadratic eigenvalue problem (QEP), it appears that the SOAR procedure must be replaced by a modified SOAR (MSOAR) one. However, implicit restarts fails to work provided that deflation takes place in the MSOAR procedure. In this paper, we first propose a Refined MSOAR (abbreviated as RSOAR) method that i...

متن کامل

Implicitly Restarted Arnoldi/lanczos Methods for Large Scale Eigenvalue Calculations

This report provides an introductory overview of the numerical solution of large scale algebraic eigenvalue problems. The main focus is on a class of methods called Krylov subspace projection methods. The Lanczos method is the premier member of this class and the Arnoldi method is a generalization to the nonsymmetric case. A recently developed and very promising variant of the Arnoldi/Lanczos s...

متن کامل

Fast Inexact Implicitly Restarted Arnoldi Method for Generalized Eigenvalue Problems with Spectral Transformation

We study an inexact implicitly restarted Arnoldi (IRA) method for computing a few eigenpairs of generalized non-Hermitian eigenvalue problems with spectral transformation, where in each Arnoldi step (outer iteration) the matrix-vector product involving the transformed operator is performed by iterative solution (inner iteration) of the corresponding linear system of equations. We provide new pe...

متن کامل

SOAR: A Second-order Arnoldi Method for the Solution of the Quadratic Eigenvalue Problem

We first introduce a second-order Krylov subspace Gn(A,B;u) based on a pair of square matrices A and B and a vector u. The subspace is spanned by a sequence of vectors defined via a second-order linear homogeneous recurrence relation with coefficient matrices A and B and an initial vector u. It generalizes the well-known Krylov subspace Kn(A;v), which is spanned by a sequence of vectors defined...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Taiwanese Journal of Mathematics

سال: 2015

ISSN: 2224-6851,1027-5487

DOI: 10.11650/tjm.1.2015.4577